Ньютона законы механики - Definition. Was ist Ньютона законы механики
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist Ньютона законы механики - definition

ТРИ ОСНОВНЫЕ АКСИОМЫ КЛАССИЧЕСКОЙ МЕХАНИКИ
Ньютоновские уравнения; Ньютона законы механики; Законы механики Ньютона; Закон действия и противодействия; 3-й закон Ньютона
  • Страница «Начал» Ньютона с аксиомами механики

Ньютона законы механики         

три закона, лежащие в основе т. н. классической механики (См. Механика). Сформулированы И. Ньютоном (1687). Первый закон: "Всякое тело продолжает удерживаться в своём состоянии покоя или равномерного и прямолинейного движения, пока и поскольку оно не понуждается приложенными силами изменить это состояние". Второй закон: "Изменение количества движения пропорционально приложенной движущей силе и происходит по направлению той прямой, по которой эта сила действует". Третий закон: "Действию всегда есть равное и противоположное противодействие, иначе, взаимодействия двух тел друг на друга между собой равны и направлены в противоположные стороны".

Н. з. м. появились как результат обобщения многочисленных наблюдений, опытов и теоретических исследований Г. Галилея, Х. Гюйгенса, самого Ньютона и др.

Согласно современным представлениям и терминологии, в первом и втором законах под телом следует понимать материальную точку (См. Материальная точка), а под движением - движение относительно инерциальной системы отсчёта (См. Инерциальная система отсчёта). Математическое выражение второго закона в классической механике имеет вид: или mω = F, где m - масса точки, υ - её скорость, a ω - ускорение, F - действующая сила (см. Динамика).

Н. з. м. перестают быть справедливыми для движения объектов очень малых размеров (элементарные частицы) и при движениях со скоростями, близкими к скорости света. См. Квантовая механика, Относительности теория.

Лит.: Галилей Г., Беседы и математические доказательства, касающиеся двух новых отраслей науки, относящихся к механике и местному движению. Соч., [пер. с лат.], т. 1, М. - Л., 1934; Ньютон И., Математические начала натуральной философии, пер. с лат., в кн.: Крылов А. Н., Собр. трудов, т. 7, М. - Л., 1936, См. также лит. при ст. Механика.

С. М. Тарг.

Законы Ньютона         
Зако́ны Нью́то́на — три важнейших закона классической механики, которые позволяют записать уравнения движения для любой механической системы, если известны силы, действующие на составляющие её тела. Впервые в полной мере сформулированы Исааком Ньютоном в книге «Математические начала натуральной философии» (1687 год).
Колыбель Ньютона         
  • При отклонениях различного количества шариков
МЕХАНИЧЕСКАЯ СИСТЕМА ДЛЯ ДЕМОНСТРАЦИИ ПРЕОБРАЗОВАНИЯ ЭНЕРГИИ РАЗЛИЧНЫХ ВИДОВ ДРУГ В ДРУГА
Маятник ньютона; Шарики Ньютона; Маятник Ньютона
Колыбе́ль Ньютона (маятник Ньютона) — названная в честь Исаака Ньютона механическая система, предназначенная для демонстрации преобразования энергии различных видов друг в друга: кинетической в потенциальную и наоборот. В отсутствие противодействующих сил (трения) система могла бы действовать вечно, но в реальности это недостижимо.

Wikipedia

Законы Ньютона

Зако́ны Нью́то́на — три важнейших закона классической механики, которые позволяют записать уравнения движения для любой механической системы, если известны силы, действующие на составляющие её тела. Впервые в полной мере сформулированы Исааком Ньютоном в книге «Математические начала натуральной философии» (1687 год). В ньютоновском изложении механики, широко используемом и в настоящее время, эти законы являются аксиомами, базирующимися на обобщении экспериментальных результатов.